
Open Source Geospatial Laboratory at ETHZ Raymarcher in Python story

1

A simple GPU-powered raymarcher in Python  –  Part II

Motivated by the outcomes in Part I of this article, I liked to extend the Numba-based
raymarcher by camera movements via mouse events, perspective projection and shading. In
my example (see [1] for the complete code), a red cuboid is raymarched in real-time.

Raymarched cuboid with Numba in Matplotlib

Dynamic images and interactivity in Python

Firstly, I searched for a windowing system where the raymarched images could be pasted
continuously, what is required to support camera movements or animations. PyQt would be
one candidate but it’s rather a large framework for creating applications with a graphical user
interface. A more lightweight solution is Matplotlib, which I chose for my example. In a plot of
this library, it is possible to add array-like images by im = plt.imshow(…) and update the data
in a custom rendering loop by im.set_data(…). In each iteration of the rendering loop, the
data is changed by calling the Numba kernel. The methods draw() and flushEvents() of
ax.figure.canvas create new frames, whereat ax = plt.gca() is the main axis of the plot. As a
precondition, you have to turn on the interactive mode by plt.ion(). You can add listeners to
mouse events like pressing and releasing buttons, moving or scrolling by
ax.figure.canvas.mpl_connect(…).

plt.ion()
ax = plt.gca()

canvas = ax.figure.canvas

canvas.mpl_connect("button_press_event", on_press)
canvas.mpl_connect("button_release_event", on_release)
canvas.mpl_connect("motion_notify_event", on_move)
canvas.mpl_connect("scroll_event", on_scroll)
canvas.mpl_connect("close_event", on_close)

result = np.zeros((image_size, image_size, 3), dtype=np.uint16)
im = plt.imshow(result)

http://osgl.ethz.ch/training/Story_Raymarcher_in_Python_I.pdf
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html
https://matplotlib.org/stable/api/image_api.html?highlight=set_data#matplotlib.image.FigureImage.set_data
https://matplotlib.org/stable/api/backend_bases_api.html?highlight=canvas%20draw#matplotlib.backend_bases.FigureCanvasBase.draw
https://matplotlib.org/stable/api/backend_bases_api.html?highlight=canvas%20draw#matplotlib.backend_bases.FigureCanvasBase.flush_events
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gca.html?highlight=gca#matplotlib.pyplot.gca
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ion.html?highlight=ion#matplotlib.pyplot.ion
https://matplotlib.org/stable/api/backend_bases_api.html?highlight=mpl_connect#matplotlib.backend_bases.FigureCanvasBase.mpl_connect

Open Source Geospatial Laboratory at ETHZ Raymarcher in Python story

2

rendering loop
while(True):
 result = np.zeros((image_size, image_size, 3), dtype=np.uint16)
 my_kernel[image_size, image_size](result, camera_position, camera_forward,
 camera_up, camera_right, camera_distance)
 im.set_data(result)

 canvas.draw()
 canvas.flush_events()

Camera movements via mouse events

In my example, I mapped mouse deviations in x and y direction to geographical coordinates
λ and φ (= longitude, latitude) of a virtual spherical earth, so that one can look at the
raymarched shape from all sides from a certain distance r. I set the initial position of the
camera in Cartesian coordinates to (0, 0, r) in a right-handed coordinate system. The initial
forward vector (aka look vector) of the camera is along the negative z-axis, the up vector
corresponds to the positive y-axis and the right vector to the positive x-axis. The initial
geographical coordinates are (λ, φ) = (0, 0). When you move along the equator to (90°, 0),
you will be at position (r, 0, 0), up will still be the positive y-axis and right the negative z-axis.
When you move to the north pole to (90°, 90°), you will be at position (0, r, 0), up will be
aligned to the negative x-axis and right to the negative z-axis. While the forward vector of the
camera is its inverted position, the up and right camera vector can be obtained by these
instructions. Note that you have to restrict the latitude to]-90°, 90°[to prevent overflows at
the poles. For rotating the position vector, I used the Rotation.apply(…) function from SciPy
as described in this kite article. r can be adjusted by scrolling the mouse wheel.

camera_coords = np.array([0.0, 0.0])
target_point = np.array([0.0, 0.0, 0.0])
camera_distance = 128
lon = camera_coords[0]
lat = camera_coords[1]
camera_position = [0, 0, camera_distance]
rotation_x = Rotation.from_rotvec([lat, 0, 0])
camera_position = rotation_x.apply(camera_position)
rotation_y = Rotation.from_rotvec([0, lon, 0])
camera_position = rotation_y.apply(camera_position)
camera_forward = normalize(target_point - camera_position)
camera_right = normalize(np.cross(camera_forward, np.array([0, 1, 0])))
camera_up = np.cross(camera_right, camera_forward)

Cartesian coordinate system and camera rotation using geographical coordinates

https://stackoverflow.com/a/3428363
https://stackoverflow.com/a/3428363
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.apply.html#scipy.spatial.transform.Rotation.apply
https://www.kite.com/python/answers/how-to-rotate-a-3d-vector-about-an-axis-in-python

Open Source Geospatial Laboratory at ETHZ Raymarcher in Python story

3

Perspective projection and shading

The camera vectors are next passed to the kernel function so that rays can be cast from the
camera position. The ray direction is calculated as forward + right * x + up * y, where x and y
are pixel coordinates normalized to [-0.5, 0.5]. The ray position is camera position + stepped
distance * ray direction, where the stepped distance is increased each loop according to the
distance to the raymarched object. In my example, a cuboid is raymarched by using this
signed distance function. When the stepped distance is too large, then the loop is quit. I
used 2r as a threshold in my example. When the distance is below a certain epsilon, then
the object is hit. By then inspecting the neighborhood of the current position of the ray, the
surface normal can be estimated according this formula. The light intensity can then be
interpreted as |dot(surface normal, light direction)|, whereat both vectors are normalized. In
my example, I have taken the ray direction as light direction, which means that the light
source is the camera. In the initial setup, the normal of the visible surface is (0, 0, 1) and the
ray direction of the center pixel is (0, 0, -1), what leads to the full light intensity. When you
would look at the same surface from another angle, the z value of the ray direction would
decrease, resulting in a lower intensity.

pos = cuda.grid(1)
image_size = 513

i = int(math.floor(pos / image_size))
j = pos - i * image_size

normalize pixel coordinates
half_block_width = int((image_size - 1) / 2)
y = (j - half_block_width) / (image_size - 1)
x = (i - half_block_width) / (image_size - 1)

ray_direction = camera_forward + camera_right * x + camera_up * y
ray_direction = add2(camera_forward, add2(mult2(camera_right, x), mult2(camera_up,
y)))
ray_direction = normalize2(ray_direction)

stepped_distance = 0.0

while(True):
 # ray_point = camera_position + ray_direction * stepped_distance
 ray_point = add2(camera_position, mult2(ray_direction, stepped_distance))

 distance = shape(ray_point)

 if (distance < 1):
 surface_normal = estimate_normal(ray_point)
 light_intensity = abs(dot2(surface_normal, ray_direction))

 result[j][i][0] = light_intensity * 255
 result[j][i][1] = 0
 result[j][i][2] = 0
 break

 stepped_distance += distance

 if (stepped_distance > camera_distance*2):
 break

https://www.youtube.com/watch?v=62-pRVZuS5c
https://www.youtube.com/watch?v=62-pRVZuS5c
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/#surface-normals-and-lighting

Open Source Geospatial Laboratory at ETHZ Raymarcher in Python story

4

Numba strengths and limitations

While implementing the upper vector calculations, I see the possibility to debug the kernel
function as a strength of Numba. If you add the environment variable
NUMBA_ENABLE_CUDASIM=1, all threads will run on the CPU, what allows to print values
or to set break points. Since too many threads slow down the debugger, it is advisable to
reduce the image size beforehand.

Debugging Numba kernels in Eclipse with PyDev

Numba supports a broad range of Python math functions in CUDA kernels, however only a
limited part of Numpy features. As suggested in this stackoverflow answer, Numpy is the
preferred choice for handling vector operations. For example, you cannot use the add
operator on two arrays, thus you have to implement the element-wise addition on your own.
Similar applies to scalar multiplication, dot products and normalization. Another limitation is
that you can declare arrays with cuda.local.array(shape=3, dtype=numba.float32), but you
cannot return them in helper functions. Therefore, I used tuples instead of arrays in helper
functions and updated their elements. It would be nice if more linear algebra functionality
could be natively supported in Numba, as it is for instance the case with WebGL. This may
be the case when overloading of Python operators will be implemented.

Overall, I was happy that I could achieve my targeted result. Maybe I will further improve it,
but up to now, this is the last part of my article. I hope that my example is helpful for your
research. Feel free to extend or simplify it!

Gist

[1] Simple raymarcher with Python and Numba (Part II)

Raimund Schnürer, 14.04.2021 (updated 17.09.2021)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://numba.pydata.org/numba-doc/latest/cuda/cudapysupported.html
https://stackoverflow.com/a/19458332
https://github.com/numba/numba/pull/5877
https://gist.github.com/sraimund/4cfe4d074ee365646ba390f03473dc3d

